Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers
نویسندگان
چکیده
Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual 'cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields--the fast-growing photonic crystal and shape-memory polymer technologies--enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale.
منابع مشابه
Fabrication of 2-D photonic crystals using azo polymers
In this paper, we have reported the fabrication of two-dimensional photonic crystals, using a direct writing method in azo polymers. Periodic structures have been fabricated using the interference patterns of two coherent laser beams. The frequency response of the initial one-dimensional structure shows an attenuation of 19.3dB at 1554nm. The twodimensional structure shows 8.3dB and 11.3dB of a...
متن کاملBroad-wavelength-range chemically tunable block-copolymer photonic gels.
Responsive photonic crystals have been developed for chemical sensing using the variation of optical properties due to interaction with their environment. Photonic crystals with tunability in the visible or near-infrared region are of interest for controlling and processing light for active components of display, sensory or telecommunication devices. Here, we report a hydrophobic block-hydrophi...
متن کاملExperimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals
Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...
متن کاملOsmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules.
Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form 'ink' capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through ...
متن کاملReconfigurable optical assembly of nanostructures
Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by ...
متن کامل